

INDICE Materiales

MATERIALES - INTRODUCCION	2
ALMACENAMIENTO DE ELASTOMEROS	5
ECOPUR	7
H-ECOPUR	10
T-ECOPUR	14
G-ECOPUR	16
ECORUBBER I	18
ECORUBBER-H	21
ECORUBBER II	23
ECORUBBER III	25
ECOSIL	27
ECOTAL	29
ECOMID	32
ECOFLON I	35
ECOFLON II	37
ECOPAEK	39
ECORYT	44

Materiales

En la tecnología de la estanqueidad se utilizan principalmente dos grupos representativos de substancias macromoleculares (polímeros) que son el grupo de los elastómeros y el de los termoplásticos (plastómeros).

Las substancias macromoleculares son compuestos orgánicos cuyas moléculas tienen miles, incluso millones, de átomos los cuales son conocidos como cadenas de moléculas .Se pueden crear modificando materiales naturales de alta concentración molecular (ej. caucho natural) o depositando elementos de baja concentración molecular (llamados monómeros) a través de diversas reacciones químicas (materiales sintéticos, "plásticos").

Elastómeros

Los elastómeros son materiales que pueden expandirse considerablemente ejerciendo sobre ellos una pequeña presión. Debido a su estructura, estos materiales tienen una alta retractibilidad, lo cual significa que la deformación remanente es muy pequeña. Básicamente hay dos grupos principales de elastómeros: con eslabonamiento cruzado y termoplásticos.

Elastómeros con eslabonamiento cruzado (vulcanizados) o cauchos, son polímeros los cuales están formados por encadenamientos de macromoléculas con varios aditivos de vulcanización. Debido a estos enlaces químicos no se derriten y empiezan a descomponerse a altas temperaturas. Además, los elastómeros se hinchan con mayor o menor intensidad en función de los diferentes medios y no se disuelven.

Elastómeros termoplásticos tienen importantes propiedades de los elastómeros por encima de un amplio campo de temperaturas, pero están física y no químicamente enlazados. Por lo tanto, pueden ser disueltos a altas temperaturas y pueden ser procesados con las técnicas tradicionales de los termoplásticos. Los elastómeros termoplásticos son solubles y generalmente se hinchan menos que sus equivalentes con eslabonamiento cruzado.

Los elastómeros son normalmente clasificados como "polares" y "no polares" y posteriormente como "saturados" y "no saturados". Hasta cierto punto, la polaridad da información sobre hinchamiento y resistencia química, y la saturación sobre resistencia al ozono y envejecimiento de los respectivos materiales.

Saturación

La saturación de los elastómeros indica si hay un doble enlace libre en las macromoléculas de los materiales.

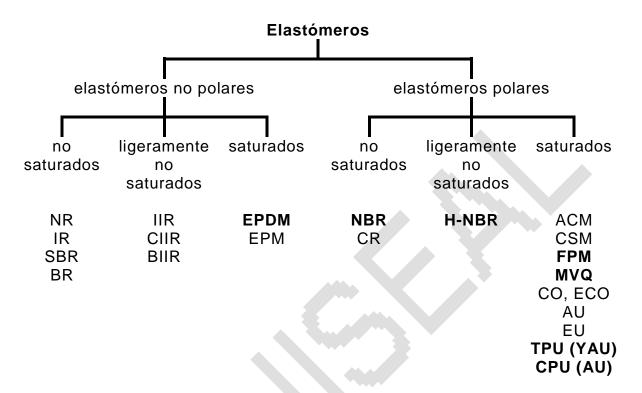
Los elastómeros saturados no tienen dobles enlaces en sus macromoléculas y son por lo tanto significativamente más resistentes al ozono y al envejecimiento que los elastómeros no saturados.

Polaridad

Tal como se menciona anteriormente, la polaridad de los materiales sintéticos proporciona información sobre el hinchamiento y la resistencia química en los diferentes medios. Se dice que los elastómeros polares son incompatibles con los medios polares y los elastómeros no polares son los medios no polares. En este contexto, se tiene que decir que la resistencia química de un elastómero no podrá ser diagnosticada por una persona que no sea un técnico altamente especializado en la materia.

Medios polares son por ejemplo: agua, detergentes, alcoholes, ácidos y bases, acetonas, ésteres,...

Medios no polares son por ejemplo: aceites minerales, petróleos, aceites


vegetales y animales, aceites y grasas de

silicona, hidrocarburos,...

Los gráficos siguientes muestran los elastómeros química y físicamente enlazados más importantes utilizados en la tecnología de la estanqueidad.

Los elastómeros más importantes en la tecnología de la estanqueidad

^{*)} Los elastómeros impresos en negrilla están en el programa estándar de Economos

Leyenda:

NR	Caucho natural	FPM	Caucho de fluorocarbono
IR	Caucho de isopreno	MVQ	Caucho de vinil-metil silicona
SBR	Caucho de estireno-butadieno	CO, ECO	Caucho de epiclorhidrina
BR	Caucho de butadieno	AU	Poliester uretano
IIR	Caucho de isobuteno-isopreno	EU	Polieter uretano
CIIR	Caucho de isobuteno-isopreno clorado	TPU (YAU)	Elastómero termoplástico de
			poliuretano de base de poliester
BIIR	Caucho de isobuteno-isopreno	CPU (AU)	Elastómero colado de
	bromado		poliuretano de base de poliester
EPDM	Caucho de etileno-propileno-dieno		
EPM	Caucho de etileno-propileno		
NBR	Caucho de acrilonitrilo-butadieno		
	(Caucho nitrílico)		
CR	Caucho de cloropreno		
H-NBR	Caucho nitrílico hidrogenado		
ACM	Caucho de poliacrilato		
CSM	Caucho de polietileno clorosulfonado		

Propiedades del almacenamiento de los elastómeros y plásticos

La siguientes instrucciones son aplicables para el almacenamiento de juntas y semiproductos de ECOPUR, H-ECOPUR, G-ECOPUR, T-ECOPUR, ECORUBBER I, ECORUBBER III, ECORUBBER III, ECORUBBER-H y ECOSIL.

Las mismas recomendaciones son válidas para productos plásticos de ECOTAL, ECOMID, ECOFLON I y ECOFLON II, y también para ECORYT y ECOPAEK, ya que no existen normas específicas para estos materiales.

Durante el almacenamiento, las características de los elastómeros pueden ser dañadas, debido por una parte a reacciones químicas producidas básicamente por la influencia del calor, la luz, el oxígeno, el ozono y variaciones químicas del material y por otra parte a procesos físicos. Estos procesos físicos, habitualmente llamados envejecimiento físico, son provocados tanto por las tensiones externas llegando a provocar roturas y deformaciones permanentes de las piezas mecanizadas, como por la migración de plastificantes del semiproducto lo cual hace que éste se vuelva más quebradizo y provoque deformaciones en las piezas.

Por lo tanto los productos de caucho sólo mantendrán sus características durante años si se garantizan unas condiciones de almacenamiento adecuadas. En este contexto se debe decir que el envejecimiento y las propiedades de almacenamiento del caucho dependen considerablemente de su estructura química. Los elastómeros no saturados como el caucho nitrílico (ECORUBBER I) envejecen más rápido bajo condiciones de almacenamiento inadecuadas que los elastómeros saturados y los cauchos fluorados (ECORUBBER II). Las características ideales de dichos productos podrán mantenerse para largos períodos de tiempo sólo si se mantienen unas condiciones de almacenamiento de acuerdo con las recomendaciones siguientes de la norma DIN7716.

Condiciones de almacenaje de los elastómeros y plásticos

- Los productos de caucho y plástico deben ser almacenados en un ambiente freso y seco. La temperatura de almacenaje debe estar sobre los 15°C y no exceder de los 25°C; la humedad relativa debe ser inferior al 65%.
- Los productos de goma y plástico no deben estar directamente expuestos a la luz, tanto luz solar como luz artificial con un alto contenido en rayos ultravioleta (son peferibles bombillas a fluorescentes).
- Las salas de almacenamiento no deben contener aparatos productores de ozono, como motores eléctricos o aparatos de alto voltage.
- Los productos de caucho no deben exponerse a corrientes de aire. Esto puede evitarse utilizando embalages excentos de aire. Los de poletileno son los más adecuados para estos casos
- Debe evitarse el contacto entre diferentes productos de caucho.

- Debe evitarse el contacto de productos de caucho y plástico con productos químicos y metales peligrosos (ej. cobre, manganeso).
- Los productos de caucho y plástico deben almacenarse lo más libres de tensión posible; es decir, no deben estar sujetos a tensiones , presiones o deformaciones flexionantes. Los productos de caucho, sobre todo las juntas, por motivos de espacio no deben presionarse o doblarse.

Si se siguen todas estas recomendaciones los semiproductos podrán almacenarse durante los períodos de tiempo indicados sin perder sus propiedades:

ECOPUR y T-ECOPUR aprox. 5 años

ECORUBBER I (NBR) aprox. 5 años

ECORUBBER III y ECORUBBER-H aprox. 8 años

ECORUBBER II, ECOSIL, ECOTAL y ECOMID aprox. 10 años

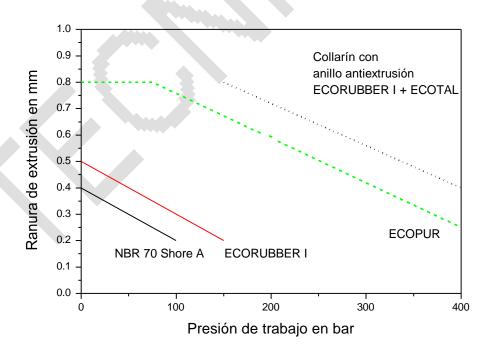
H-ECOPUR, G-ECOPUR, ECOFLON I y ECOFLON II aprox. 12 años

ECORYT y ECOPAEK aprox. 12 años

Las guías, recomendaciones e instrucciones mencionadas están basadas en nuestros conocimientos y experiencias. Por lo tanto, no podemos aceptar ninguna garantía ni responsabilidad al respecto.

ECOPUR (TPU) - verde

ECOPUR es un elastómero termoplástico de poliuretano (TPU) con base de poliéster desarrollado por ECONOMOS. Pertenece al grupo de elastómeros polares y saturados. El uso de materias primas especiales hace que este material sea especialmente recomendado para aplicaciones de estanqueidad. ECOPUR es de color verde.


Características:

Comparado con los elastómeros con eslabonamiento cruzado (ECORUBBER I - NBR, ECORUBBER II - FPM, ECORUBBER III - EPDM) el ECOPUR tiene unas propiedades mecánicas superiores (ver tabla).

Propiedades típicas del ECOPUR y ECORUBBER I:

Designación	Resistencia a la	Alargamiento de	Resistencia al	Abrasión
	tracción	rotura	desgarre	DIN 53516
	DIN 53504	DIN 53504	DIN 53515	
ECOPUR	50 N/mm ²	480 %	120 N/mm	18 mm ³
ECORUBBER I	17 N/mm ²	150 %	18 N/mm	110 mm^3

ECOPUR tiene mucha más resistencia a la extrusión que los elastómeros de caucho. El siguiente diagrama muestra las ranuras de extrusión admisibles en función de la presión para varios materiales o combinaciones de material.

De esta comparación se desprende una especial aptitud del ECOPUR para aplicaciones de estanqueidad. Además, ECOPUR posee una muy baja deformación por compresión (20% a 70°C/70h). Campo de temperatura de servicio -30°C a +110°C.

Debido a su estructura química saturada ECOPUR tiene una buena resistencia a la temperatura, a la intemperie y al ozono. El hinchamiento con aceites minerales es relativamente bajo en comparación con los elastómeros con eslabonamiento cruzado. La permeabilidad del ECOPUR es muy baja (la tendencia a la explosión por descompresión no es relevante).

Como los elastómeros de poliuretano, ECOPUR tiene una mayor resistencia a la radiación que los elastómeros con eslabonamiento cruzado.

Resistencia:

Buena resistencia	Resistencia media	Poca o nula resistencia
Fluidos hidráulicos basados en aceite mineral	Carburantes sin alcohol	Hidrocarburos aromáticos Hidrocarburos clorados
Aceites y grasas minerales (algunos aditivos pueden ser destructivos)	Aceites hidráulicos biodegradables (HEES, HETG)	Acetonas, alcoholes, glicoles
Agua hasta 40°C	Fluidos hidráulicos resistentes al fuego, HFA y HFB hasta max. +30°C	Fluidos hidráulicos resistentes al fuego de los grupos HFC y HFD
Hidrocarburos alifáticos (propano, butano)	Aceites y grasas de silicona	Agua caliente, vapor, álcalis, aminas, ácidos, bases
Aire comprimido hasta 110 °C		Fluidos para frenos basados en glicol

Aplicaciones:

ECOPUR es usado principalmente cuando se necesitan altas propiedades mecánicas y alta resistencia al desgaste, además de un buen comportamiento en aceite mineral.

ej.: Juntas que deban tener altas prestaciones como baja fricción, alta resistencia al desgaste, alta resistencia a la extrusión, fácil montaje, pequeñas dimensiones y una larga vida en servicio.

Principales aplicaciones: juntas para vástago

juntas para pistón

rascadores juntas rotativas juntas tóricas

ECOPUR (verde)

Elastómero termplástico de poliuretano (TPU) <u>DIN</u> <u>ASTM</u> con base de poliester YAU YAU

	ı		
Propiedades	Unidades	Valor	Norma
-			
Dureza	SHORE A	95 ± 2	DIN 53505
Dureza	SHORE D	48 ± 3	DIN 53505
Densidad	g/cm³	$1,20 \pm 0,01$	DIN 53479
Resistencia a la tracción	N/mm²	≥ 40	DIN 53504
Alargamiento de rotura	%	≥ 430	DIN 53504
Tensión al 100% de alargamiento	N/mm²	≥ 12	DIN 53504
Deformación por compresión:			
70°C / 24h, 20 % compresión	%	≤ 30	
Deformación por compresión:			
100°C / 24h, 20 % compresión	%	≤ 35	
Deformación por compresión:			
70°C/70h, 10 % compresión	%	20	DIN 53517
Resistencia al desgarre	N/mm	≥ 100	DIN 53515
Recuperación elástica	%	42	DIN 53512
Abrasion	mm³	18	DIN 53516
Temperatura mínima de servicio	°C	-30	
Temperatura máxima de servicio	°C	+110	

Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Los valores indicados con los símbolos mayor que (\ge) y menor que (\le) son valores nominales y deben determinarse para cada lote de fabricación. Todos los demás valores que no se han marcado son valores típicos que se han ensayado con muestras seleccionadas.

Judenburg, Julio 1996 Dr. TS/Materiales

H-ECOPUR es un elastómero termoplástico de poliuretano (TPU) desarrollado por ECONOMOS. Es resistente a la hidrólisis y pertenece al grupo de los elastómeros polares y saturados. El uso de materias primas especiales hace que este material sea especialmente recomendable para su uso en agua, fluidos biodegradables, líquidos resistentes al fuego (HFA, HFB) y aceites minerales con aditivos. H-ECOPUR es de color rojo.

Características:

Comparado con ECOPUR, H-ECOPUR tiene las mismas propiedades mecánicas. La deformación por compresión es extremadamente baja (20% a 70°C/70h). Campo de temperatura de funcionamiento de -20°C a +110°C.

La principal diferencia es - en el caso de los elastómeros de poliuretano - la inusual estabilidad ante la hidrólisis y la alta resistencia química. Por lo tanto puede ser recomendado su uso en agua caliente y fluidos biodegradables. La alta resistencia química del H-ECOPUR se puede ver en los siguientes diagramas:

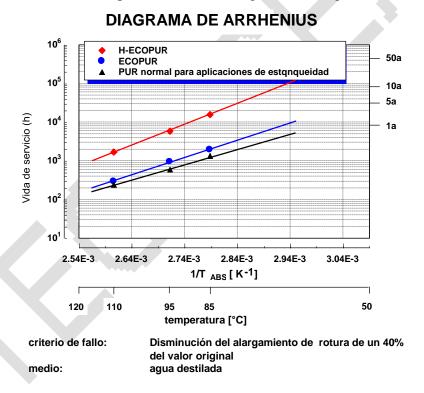


Fig. 1 Diagrama de Arrhenius de envejecimiento de varios elastómeros de poliuretano en agua destilada.

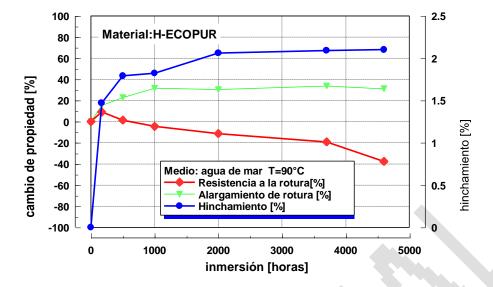


Fig. 2 Influencia del agua de mar caliente (90°C) en las propiedades del H-ECOPUR (resistencia a la tracción, cambio de volumen)

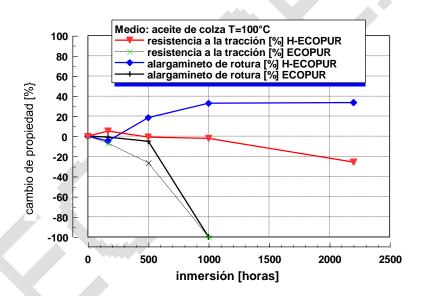


Fig. 3 Influencia de un fluido hidráulico biodegradable (aceite de colza, 100°C) en las propiedades del H-ECOPUR y ECOPUR

Debido a su naturaleza saturada y a su estructura química el H-ECOPUR es altamente resistente al ozono, a la intemperie y a la temperatura. Dada su alta estabilidad a la hidrólisis es especialmente recomendado en regiones tropicales. Comparado con los elastómeros con eslabonamiento cruzado el hinchamiento en aceites minerales es muy bajo. En pruebas realizadas se demuestra que la permeabilidad del H-ECOPUR es más baja que la del ECOPUR por lo tanto es especialmente recomendado para su utilización con gases a alta presión (pistones acumuladores). Al igual que el ECOPUR, el H-ECOPUR es altamente resistente a la radiación.

Resistencia:

Buena resistencia	Resistencia media	Poca o nula resistencia
Fluidos hidráulicos de base mineral	Fluidos resistentes al fuego tipo HFC (mezcla de agua-glicol)	Hidrocarburos aromáticos
Fluidos hidráulicos biodegradables	Algunos aditivos para agua a presión (ej. fungicidas) pueden tener efectos destructivos	Hidrocarburos clorados
Fluidos hidráulicos resistentes al fuego HFA y HFB	Alcoholes	Acetonas, glicoles
Aceites y grasas minerales (algunos aditivos pueden tener efectos destructivos)	Carburantes sin alcohol (excepto gasolina súper y gasolina sin plomo)	Fluidos de frenos basados en glicol
Aceites y grasas de silicona		Vapor recalentado por encima de 100°C, alcalis, aminas
Hidrocarburos alifáticos (por ejemplo propano, butano)		Ácidos y bases concentrados
Agua caliente y agua de mar hasta +90°C		
Disoluciones de ácidos y bases		

Aplicaciones:

H-ECOPUR está especialmente recomendado para aplicaciones donde se necesite una alta estabilidad a la hidrólisis y una buena resistencia química (también a fluidos hidráulicos polares) además de una buena resistencia en aceites minerales. Las propiedades mecánicas y la resistencia al desgaste corresponden aproximadamente al ECOPUR.

ej.: H-ECOPUR cumple las demandas de estanqueidad para

baja fricción,

bajo desgaste,

alta resistencia a la extrusión,

fácil montaje (sin cortar ni pellizcar durante el montaje),

pequeño tamaño contructivo

además de

estabilidad a la hidrólisis (minería, hidráulica de agua) y resistencia química (aceites hidráulicos biodegradables).

ATENCION!

En perfiles de H-ECOPUR con fluidos biodegradables se recomienda utilizar como elemento pretensor solamente FKM (ECORUBBER II).

Principales usos: juntas para vástago

juntas para pistón

rascadores

juntas tóricas para hidráulica de agua y aceites degradables

H - ECOPUR (rojo)

Elastómero termoplástico de poliretano (TPU) <u>DIN</u> <u>ASTM</u> con base de poliester (resistente a la hidrólisis) YAU YAU

Propiedad	Unidad	Valor	Norma
Dureza	SHORE A	95 ± 2	DIN 53505
Dureza	SHORE D	48 ±3	DIN 53505
Densidad	g/cm³	$1,20 \pm 0,01$	DIN 53479
Resistencia a la tracción	N/mm²	≥ 50	DIN 53504
Alargamiento de rotura	%	≥ 330	DIN 53504
Tensión al 100% de alargamiento	N/mm²	≥ 13	DIN 53504
Deformación por compresión:	A 3		
70°C / 24h, 20 % compresión	%	≤ 27	
Deformación por compresión:			
100°C / 24h, 20 % compresión	%	≤ 33	
Deformación por compresión:			
70°C/70h, 10 % compresión	%	20	DIN 53517
Resistencia al desgarro	N/mm	≥ 100	DIN 53515
Recuperación elástica	%	29	DIN 53512
Abrasión	mm³	17	DIN 53516
Temperatura mínima de servicio	°C	-20	
Temperatura máxima de servicio	°C	+110	

Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Los valores indicados con los símbolos mayor que (\ge) y menor que (\le) son valores nominales y deben determinarse para cada lote de fabricación. Estos valores son sólo ensayados con muestras seleccionadas.

Judenburg, Julio 1996 Dr. TS/Materiales

T-ECOPUR es un ECOPUR modificado para bajas temperaturas. Las diferencias con el ECOPUR son un más bajo punto de congelación (temperatura de transición del vidrio -42°C), una mayor elasticidad y una deformación por compresión a -40°C de un 45% (mejor que el caucho de silicona). La temperatura más baja de funcionamiento es de -50°C.

Aplicaciones:

Las mismas que el ECOPUR pero para utilizar a bajas temperaturas, principalmente en regiones frías y para aplicaciones frigoríficas.

T-ECOPUR (azul) Elastómero termoplástico de poliuretano (TPU) para aplicaciones a bajas temperaturas

Propiedad	Unidad	Valor	Norma
Dureza	SHORE A	95 ± 2	DIN 53505
Dureza	SHORE D	48 ± 2	DIN 53505
Densidad	g/cm³	$1,17 \pm 0,01$	DIN 53479
Resistencia a la tracción	N/mm²	≥ 50	DIN 53504
Alargamietno de rotura	%	≥ 450	DIN 53504
Tensión al 100% de alargamiento	N/mm²	≥ 12	DIN 53504
Deformación por compresión:			
70°C/70h, 10 % compresión	%	20	DIN 53517
Deformación por compresión:			
a - 40°C	%	45	DIN 53517
Resistencia al desgarre	N/mm	80	DIN 53515
Recuperación elástica	%	50	DIN 53512
Abrasión	mm³	15	DIN 53516
Temperatura de transición del	°C	- 42	DIN 53445
vidrio			
Temperatura mínima de servicio	°C	-50	
Temperatura máxima de servicio	°C	+110	

Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Los valores indicados con los símbolos mayor que (\ge) y menor que (\le) son valores nominales y deben determinarse para cada lote de fabricación. Todos los demás valores que no se han marcado son valores típicos que se han ensayado con muestras seleccionadas.

Judenburg, Julio 1996 Dr. TS/Materiales

G-ECOPUR (CPU) - rojo

G-ECOPUR es un elastómero colado desarrollado por ECONOMOS. Está fabricado mediante un proceso especial de colado y posee los componentes básicos del H-ECOPUR, por lo tanto sus características básicas pueden compararse con las del H-ECOPUR.

Aplicaciones:

Las mismas que al H-ECOPUR y el ECOPUR, pero para dimensiones desde 550mm hasta 2000 mm y para dimensiones especiales en cuanto a grosor de pared.

G-ECOPUR (rojo)

Elastómero colado de poliuretano (CPU) con <u>DIN</u> <u>ASTM</u> base de poliester (resistente a la hidrólisis) AU AU

Propiedad	Unidad	Valor	Norma
Dureza	SHORE A	95 ± 2	DIN 53505
Dureza	SHORE D	47 ± 3	DIN 53505
Densidad	g/cm³	$1,20 \pm 0,01$	DIN 53479
Resistencia a la tracción	N/mm²	≥ 45	DIN 53504
Alargamiento de rotura	%	≥ 280	DIN 53504
Tensión al 100% de alargamiento	N/mm²	≥ 11	DIN 53504
Deformación por compresión:			
70°C/24h, 20 % compresión	%	≤30	
Deformación por compresión:		3	
100°C/24h, 20 % compresión	%	≤40	
Deformación por compresión:			
70°C/70h, 10 % compresión	%	20	DIN 53517
Resistencia al desgarre	N/mm	≥40	DIN 53515
Recuperación elástica	%	43	DIN 53512
Abrasion	mm³	25	DIN 53516
Temperatura mínima de servicio	°C	-20	
Temperatura máxima de servicio	°C	+110	

Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Los valores indicados con los símbolos mayor que (\ge) y menor que (\le) son valores nominales y deben determinarse para cada lote de fabricación. Todos los demás valores que no se han marcado son valores típicos que se han ensayado con muestras seleccionadas.

Judenburg, Julio 1996 Dr. TS/Materiales

ECORUBBER I (NBR) - negro

ECORUBBER I es un semiproducto fabricado por ECONOMOS de caucho de acrilonitrilo butadieno vulcanizado con azufre y pertenece al grupo de elastómeros polares no saturados. ECORUBBER I está rellenado con carbón negro y debido a su alta polaridad no es recomendable para aislamientos eléctricos.

Características:

ECORUBBER I posee unas buenas propiedades físicas y una alta resistencia a la abrasión para ser un caucho (110 mm³). La temperatura de servicio oscila entre - 30°C y +100°C (son posibles puntas de hasta +120°C). A altas temperaturas, el envejecimiento se acelera y el material empieza a endurecerse y agrietarse. En la atmósfera este efecto empieza sobre los 80°C, si no está en contacto directo con el aire el efecto es más lento (ej. aceite caliente).

Debido a su estructura no saturada, la resistencia al ozono, a la intemperie y al envejecimiento es **pequeña** (cuidado con las condiciones de almacenamiento). El hinchamiento en aceite mineral es bajo, pero depende mucho de los componentes del aceite. La permeabilidad con gases es algo más alta y por lo tanto existe una tendencia a la descompresión explosiva, con lo cual las partículas del material se desintegran.

Resistencia:

Buena resistencia	Resistencia media	Poca o nula resistencia
Grasas y aceites minerales	Gasolinas con compuestos	Hidrocarburos aromáticos
	aromáticos hasta un 40 %	(tolueno, benceno)
	(gasolinas con plomo)	
Hidrocarburos alifáticos (propano,	Fluidos hidráulicos	Hidrocarburos clorados
butano)	biodegradables (aditivos para	(tricloro y percloroetileno)
	el encogimiento pueden	
	provocar hinchamiento - test	
	necesario)	
Agua	2	Fluidos para frenos basados en
		glicol
Fluidos hidráulicos resistentes al	Grasas y aceites de silicona	Fluidos hidráulicos resistentes
fuego de los grupos HFA, HFB y	(aceites pueden provocar	al fuego del grupo HFD (ester
HCF	encogimiento)	fosfato)
Aceites y grasas vegetales y		Disolventes polares (acetona,
animales		etil- acetato)
Gasoil		
Disoluciones de ácidos y bases,		
soluciones salinas a temperatura		
ambiente		

Aplicaciones:

ECORUBBER I se utiliza principalmente cuando se necesitan una alta elasticidad y una buena deformación por compresión, además de una buena resistencia en contacto con carburantes y aceites minerales.

ej.: en la tecnología de estanqueidad donde se necesiten juntas "blandas", o como elemento de precarga para piezas en materiales menos elásticos.

Principales usos:

juntas de vástago a baja presión juntas de pistón a baja presión rascadores en casos especiales

juntas rotativas (retenes de aceite, empaquetaduras)

juntas tóricas

Reléase:

Test DIN DVGW 91,01e853

Juntas para utilización con gas, tipo: F

Nivel de dureza: 3

ECORUBBER I (negro)

Caucho de Acrilonitrilo - Butadieno (NBR)

DIN / ISOASTM

NBR NBR

Propiedad	Unidad	Valor	Norma
Dureza	SHORE A	85 ± 5	DIN 53505
Densidad	g/cm³	$1,32 \pm 0,02$	DIN 53479
Resistencia a la tracción	N/mm²	≥ 15	DIN 53504
Alargamieto de rotura	%	≥ 130	DIN 53504
Tensión al 100% de alargamiento	N/mm²	≥ 11,0	DIN 53504
Deformación por compresión: 100°C / 22h	%	≤ 12	DIN 53517
Resistencia al desgarre	N/mm	18	DIN 53515
Recuperación elástica	%	22	DIN 53512
Abrasión	mm³	110	DIN 53516
Temperatura mínima de servicio	°C	-30	
Temperatura máxima de servicio	°C	+100	
Temperatura frágil	°C	-40	ASTM D 736
TR 10	°C	-26	ASTM D 1329
Hinchamiento con aceite ASTM N°.1 según DIN 53521 70h/100°C:			
Cambio de dureza	Shore A	+6	DIN 53505
Cambio de volumen	%	-8	DIN 53521
Hinchamiento con aceite ASTM N°.3 según DIN 53521 70h/100°C:			
Cambio de dureza	Shore A	0	DIN 53505
Cambio de volumen	%	+1	DIN 53521
Resistencia al calor, aire 70h/100°C:			
Cambio de dureza	Shore A	+3,0	DIN 53505
Cambio de volumen	%	0	DIN 53521
Hinchamiento con agua 70h/100°C:			
Cambio de dureza	Shore A	0	DIN 53505
Cambio de volumen	%	+2,5	DIN 53521

Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Los valores indicados con los símbolos mayor que (\ge) y menor que (\le) son valores nominales y deben determinarse para cada lote de fabricación. Todos los demás valores que no se han marcado son valores típicos que se han ensayado con muestras seleccionadas.

Judenburg, Julio 1996 Dr. TS/Materiales

ECORUBBER-H (H-NBR) - negro

ECORUBBER-H es un semiproducto de caucho de acrilonitrilobutadieno hidrogenado con eslabonamiento cruzado por péroxico fabricado por ECONOMOS. ECORUBBER-H pertenece al grupo de los elastómeros polares y saturados. ECORUBBER-H **no** está cargado con carbón negro, pero está coloreado de negro.

Características:

Comparado con ECORUBBER I, ECORUBBER-H tiene unas mejores propiedades mecánicas como son la resistencia a la abrasión y a la tracción y el alargamiento de rotura. Debido a su estructura saturada el campo de temperaturas de trabajo es más amplio (de -25°C hasta +150°C; puntas de +170°C). Debido a su estructura química saturada tiene una excelente resistencia al ozono, a la intemperie y al envejecimiento. El hinchamiento en aceite mineral es muy pequeño, pero depende mucho de la composición del aceite. La compatibilidad con aceites altamente aditivados es mejor que con el ECORUBBER I. La permeabilidad es alta teniendo en cuenta su tendencia a la descompresión explosiva, con lo cual las partículas del material se desintegran.

Resistencia:

Buena resistencia	Resistencia media	Poca o nula resistencia
Grasas y aceites minerales	Carburantes con compuestos	Hidrocarburos aromáticos
	aromáticos hasta un 40%	(tolueno, benceno)
Hidrocarburos alifátcos (propano,	(gasolina sin plomo)*	Hidrocarburos clorados
butano)		(tricloro y percloroetileno)
Agua	Fluidos hidráulicos	Fluidos de frenos basados en
	biodegradables (encogimietno)	glicol
Fluidos hidráulicos resistentes al	los aditivos pueden provocar	Fluidos resistentes al fuego
fuego HFA, HFB y HFC	hinchamiento - test necesario)	del grupo HFD (ester fosfato)
Grasas y aceites vegetales y	Grasas y aceites de silicona (los	Disolventes polares (acetona,
animales	aceites pueden provocar	etil- acetato)
Gasoil	hinchamiento)	Vapor recalentado
Aceites altamente aditivados		
(aceites hipoides para	3 7	
transmisiones)*	8	
Disoluciones de ácidos y bases,		
disoluciones salinas a temperatura		
ambiente		
Aceite crudo (con contenido de		
sulfuro de hidrógeno y aminas)		

*test recomendado

Incl.: Hoja datos

Aplicaciones:

ECORUBBER-H es usado principalmente en aplicaciones donde se necesita una buena deformación por compresión con altas temperaturas y aceites muy aditivados junto con una alta elasticidad y resistencia a aceites minerales (sustituto del fluorocaucho)

- ej. Juntas de motor y transmisión para vehículos
 - Elementos de estanqueidad para aplicaciones agrícolas

Principales usos: juntas rotativas

juntas tóricas juntas especiales

ECORUBBER-H (negro)

Caucho de acrilonitrilo butadieno hidrogenado (HSN, H-NBR)

marcado con tinta verde

Propiedad	Unidad	Valor	Norma
Dureza	SHORE A	85 ± 5	DIN 53505
Densidad	g/cm³	$1,22 \pm 0,02$	DIN 53479
Resistencia a la tracción	N/mm²	≥ 18	DIN 53504
Alargamiento de rotura	%	≥ 180	DIN 53504
Tensión al 100% de alargamiento	N/mm²	≥ 10	DIN 53504
Deformación por compresión:			
100°C / 22h	%	≤ 22	DIN 53517
Resistencia al desgarre	N/mm	30	DIN 53515
Recuperación elástica	%	29	DIN 53512
Abrasión	mm³	90	DIN 53516
Temperatura mínima de servicio	°C	-25	
Temperatura máxima de servicio	°C	+150	
Hinchamiento con aceite ASTM N°.1			
según DIN 53521 70h/100°C:	~~		
Cambio de dureza	Shore A	+6	DIN 53505
Cambio de volumen	%	-8	DIN 53521
Hinchamiento con aceite ASTM N°.3			
según DIN 53521 70h/100°C:			
Cambio de dureza	Shore A	-8	DIN 53505
Cambio de volumen	%	+11	DIN 53521
Resistencia al calor, aire 70h/100°C:			
Cambio de dureza	Shore A	+5	DIN 53505
Cambio de volumen	%	0	DIN 53521
Hinchamiento con agua 70h/100°C:			
Cambio de dureza	Shore A	0	DIN 53505
Cambio de volumen	%	+2,5	DIN 53521

Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Los valores indicados con los símbolos mayor que (\ge) y menor que (\le) son valores nominales y deben determinarse para cada lote de fabricación. Todos los demás valores que no se han marcado son valores típicos que se han ensayado con muestras seleccionadas.

Judenburg, Julio 1996 Dr. TS/Materiales

ECORUBBER II (FPM) - marrón

ECORUBBER II es un semiproducto de caucho de fluorocarbono con eslabonamiento cruzado por bifenol (VITON $^{\otimes}$ de DU PONT). ECORUBBER II pertenece al grupo de elastómeros especiales polares y saturados . ECORUBBER II es de color marrón.

Características:

ECORUBBER II es altamente resistente a la temperatura y a los ataques químicos. El campo de temperaturas va de -20°C hasta + 200°C (puntas de hasta +230°C). Debido a su naturaleza saturada y a su estructura química ECORUBBER II tiene una extremada resistencia al envejecimiento, al ozono y a la intemperie. El hinchamiento en diferentes medios es muy bajo, incluso en hidrocarburos aromáticos. La permeabilidad es muy baja y por lo tanto puede utilizarse en aplicaciones de vacío.

ECORUBBER II no es inflamable. Resistencia baja a la radiación.

Resistencia:

Buena resistencia	Resistencia media	Poca o nula resistencia
Grasas y aceites minerales	Agua caliente	
Hidrocarburos alifáticos (propano, butano)		Skydrol 500
Grasas y aceites de silicona		Amoníaco, aminas, álcalis
Grasas y aceites vegetales y animales		Vapor recalentado
Fueles, también gasolina super y gasolina	Fluidos resistentes al	Acidos orgánicos (ácido
sin plomo con compuestos aromáticos hasta	fuego HFA, HFB y	acético y dórmico)
un 40%	HFC	
Aceites altamente aromáticos y sufurados		Acido fluorhídrico, ácido
		clorosulfónico
Fluidos resistentes al fuego tipo HFD-S		Disolventes polares
(hidrocarburos clorados) y HFD-R (ester		(acetona, metiletil-cetona,
fosfato - algunos tipos pueden tener efectos		etil-acetato, dioxano)
destructivos)		
Fluidos hidráulicos biodegradables		Fluidos de frenos basados en
Hidrocarburos aromáticos(benceno, tolueno)		glicol
Hidrocarburos clorados	•	
Disoluciones y ácidos monorgánicos		

Aplicaciones:

ECORUBBER II se usa principalmente en aplicaciones donde las altas temperaturas y los ataques químicos son importantes. Además, ECORUBBER II se usa en sistemas hidráulicos con fluidos resistentes al fuego del grupo HFD y como elemento de precarga en juntas de H-ECOPUR para trabajar en aceites biodegradables.

Principales usos: juntas especiales para la industria química y la ingeniería del calor

juntas para ejes a alta velocidad

juntas tóricas

juntas hidráulicas para fluidos HFD

ECORUBBER II(marrón)

Caucho fluorado

(Viton = Marca de DuPont)

FPM FKM ASTM

Propiedades	Unidad	Valor	Norma
Dureza	SHORE A	85 ± 5	DIN 53505
Densidad	g/cm³	$2,50 \pm 0,03$	DIN 53479
Resistencia a la tracción	N/mm²	≥ 10,0	DIN 53504
Alargamiento de rotura	%	≥ 90	DIN 53504
Tansión al 100% de alargamiento	N/mm²	≥ 7,0	DIN 53504
Deformación por compresión: 175°C / 22h	%	≤ 14	DIN 53517
Resistencia al desgarre	N/mm	17	DIN 53515
Recuperación elástica	%	8	DIN 53512
Abrasión	mm³	180	DIN 53516
Temperatura mínima de servicio	°C	-20	
Temperatura máxima de servicio	°C	+200	
Resistencia al calor: 24h / 230°C:			
Cambio de dureza	Shore A	+3	DIN 53505
Cambio de resistencia a la tracción	%	+11	DIN 53504
Cambio de alargamiento de rotura	%	-18	DIN 53504
Hinchamiento con aceite ASTM N°1 según DIN 53521 70h/150°C:			
Cambio de dureza	Shore A	-1	DIN 53505
Cambio de resistencia a la tracción	%	+15	DIN 53504
Cambio de alargamiento de rotura	%	-20	DIN53504
Cambio de volumen	%	-0,2	DIN 53521
Hinchamiento con aceite ASTM Nº3			
según DIN 53521 70h/150°C:			
Cambio de dureza	Shore A	-2	DIN 53505
Cambio de resistencia a la tracción	%	+6	DIN 53504
Cambio de alargamiento de rotura	%	-20	DIN53504
Cambio de volumen	%	+1,9	DIN 53521

Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Los valores indicados con los símbolos mayor que (\ge) y menor que (\le) son valores nominales y deben determinarse para cada lote de fabricación. Todos los demás valores que no se han marcado son valores típicos que se han ensayado con muestras seleccionadas.

Judenburg, Julio1996 Dr.TS/Materiales

ECORUBBER III (EPDM) - negro

ECORUBBER III es un semiproducto fabricado por ECONOMOS, de caucho etilenopropileno-dieno con eslabonamiento cruzado por peróxido. Este material pertenece al grupo de los elatómeros no polares y saturados. ECORUBBER III está rellenado con carbón negro y por lo tanto **no** es recomendable para aislamientos eléctricos.

Características:

ECORUBBER III tiene unas buenas propiedades mecánicas y puede utilizarse en un amplio campo de temperaturas de -50°C hasta +150°C (vapor de agua hasta 180°C). Debido a su estructura saturada ECORUBBER III es altamente resistente al ozono, al envejecimiento y a la intemperie. Debido a su no polaridad, ECORUBBER III **no** es resistente a aceites minerales. Las grasas y aceites minerales así como las grasas y aceites animales o vegetales provocan un hinchamiento inaceptable. El uso especial de plastificantes permite usarlo en líquidos de frenos con base de glicol (SL-DOT4). Para esta aplicación hay que tener en cuenta la legislación de cada país para cada caso y obtener la correspondiente autorización (ECONOMOS **no** está en posición de **darla**). La permeabilidad en gases es alta; la resistencia a la radiación es alta.

Resistencia:

Buena resistencia	Resistencia media	Poca o nula resistencia
Agua y vapor caliente hasta 180°C	Grasas y aceites de silicona	Grasas y aceites minerales
Fluidos resistentes al fuego del	(los aceites pueden	Fluidos hidráulicos resistentes
grupoHFD-R sin aceite mineral (ester	provocar hinchamiento, test	al fuego HFA, HFB y HFD-S
fosfato)	recomendado)	(hidrocarburos clorados)
Detergentes, legías		
Ácidos y bases orgánicos e		Hidrocarburos clorados y
inorgánicos		aromáticos
Soluciones salinas y medios oxidantes		Hidrocarburos alifáticos
		(propano, butano)
Fluidos resistentes al fuego del tipo		Aceites y grasas vegetales y
HFC (agua glicolada, asegurarse que		animales
el fluido no contiene aceite mineral		
Disolventes polares (ej. alcoholes,		Fluidos hidráulicos
acetonas, ésteres, etc.)		biodegradables
Skydrol 500 y 7000		
Fluidos de frenos basados en glicol		

Aplicaciones:

ECORUBBER III se usa principalmente en la tecnología del lavado y la limpieza, donde se usan medios polares (detergentes, legías, etc.). ECORUBBER III es el material más recomendable para agua caliente y vapor de agua (lubricación con grasas de silicona)

Princiaples usos: piezas especiales para lavadoras

juntas para vástago y pistón

juntas tóricas

juntas rotativas (piezas para vehículos)

ECORUBBER III (negro)

Caucho de etileno-propileno (EPDM)
vulcanizado con peróxido

DIN/ISO
EPDM
EPM

marcado con tinta azaul

Propiedad	Unidad	Valor	Norma
Topicaua	Ciliada	V 4101	11011114
Dureza	SHORE A	85 ± 5	DIN 53505
Densidad	g/cm³	$1,22 \pm 0,02$	DIN 53479
Resistencia a la tracción	N/mm²	≥ 12	DIN 53504
Alargamietno de rotura	%	≥ 80	DIN 53504
Tensión al 100% de alargamiento			
Deformación por compresión:			
100°C / 22h	%	≤ 10	DIN 53517
Resistencia al desgarre	N/mm	10	DIN 53515
Recuperación elástica	%	38	DIN 53512
Abrasión	mm³	140	DIN 53516
Temperatura mínima de servicio	°C	-50	
Temperatura máxima de servicio	°C	+150	
Resistencia al calor, aire 70h/150°C:			
Cambio de dureza	Shore A	+4	DIN 53505
Cambio de resitencia a la tracción	%	-15	DIN 53504
Cambio de alargamiento de rotura	%	-22	DIN 53504
SL-DOT 4 - 70h/125°C			
Cambio de dureza	Shore A	0	DIN 53505
Cambio de resistencia a la tracción	%	-3	DIN 53504
Cambio de alargamiento de rotura	%	-10	DIN53504
Cambio de volumen	%	-1,6	DIN 53521

Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Los valores indicados con los símbolos mayor que (\ge) y menor que (\le) son valores nominales y deben determinarse para cada lote de fabricación. Todos los demás valores que no se han marcado son valores típicos que se han ensayado con muestras seleccionadas.

Judenburg, Julio 1996 Dr. TS/Materiales

ECOSIL (MVQ) - marrón rojizo

ECOSIL es un caucho de silicona con eslabonamiento cruzado por peróxido fabricado por ECONOMOS. ECOSIL pertenece al grupo especial de elastómeros polares y saturados. ECOSIL no está cargado con carbón negro y es recomendable para aislamientos eléctricos.

Características:

Comparado con otros elastómeros ECOSIL posee menor rigidez. Puede usarse a temperaturas entre -60°C y +200°C. Debido a su estructura saturada ECOSIL tiene una excelente resistencia al ozono, al envejecimiento y a la intemperie.

El hinchamiento en aceites minerales es muy bajo, pero depende mucho de la composición del aceite. La compatibilidad con aceites altamente aditivados es mejor que con ECORUBBER I. La permeabilidad en gases es muy alta. ECOSIL es usado como material de estanqueidad para la industria farmacéutica y alimentaria.

Resistencia:

Buena resistencia	Resistencia media	Poca o nula resistencia
Aceites naturales alifáticos de motor y		Aceites minerales aromáticos
transmisiones, también aceites sulfurados		
Fluidos de frenos basados en glicol		Carburantes
Aceites y grasas minerales y vegetales		Grasas y aceites de silicona
Agua hasta 100°C		Hidrocarburos aromáticos (tolueno,
		benceno)
Fluidos resistentes al fuego HFD-R y		Hidrocarburos clorados
HFD-S (ésteres fosfatados e		(tricloroetileno
hidrocarburos clorados)		
Disoluciones salinas		ésteres y éteres
	* *	Vapor recalentado sobre 120°C
		(posibles cortos tiempos de
A 8		esterilización)
		Ácidos y álcalis

Aplicaciones:

ECOSIL se usa principalmente en casos de altas temperaturas o ataques químicos donde no haya otras alternativas. Debido a sus bajas propiedades mecánicas su uso se debe reducir a aplicaciones estáticas.

Princiapes usos: juntas especiales para la industria química y alimentaria

juntas rotativas especiales

juntas tóricas juntas para bridas

ECOSIL (marrón rojizo)

Caucho de silicona DIN AST

Propiedad	Unidad	Valor	Norma
Dureza	SHORE A	85 ± 5	DIN 53505
Densidad	g/cm³	$1,52 \pm 0,03$	DIN 53479
Resistencia a la tracción	N/mm²	≥7	DIN 53504
Alargamiento de rotura	%	≥ 130	DIN 53504
Tensión al 100% de alargamiento	N/mm²	≥ 5	DIN 53504
Deformación por compresión:			
175°C / 22h	%	≤ 15	DIN 53517
Resistencia al desgarre	N/mm	8	DIN 53515
Recuperación elástica	%	44	DIN 53512
Abrasión			
Temperatura mínima de servicio	°C	-60	
Temperatura máxima de servicio	°C	+200	
Resistencia la calor, aire 168h/225°C			
Cambio de dureza	Shore A	+3	DIN 53505
Cambio de resistencia a la tracción	%	-10	DIN 53504
Cambio de alargamiento de rotura	%	-40	DIN 53504

Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Los valores indicados con los símbolos mayor que (\ge) y menor que (\le) son valores nominales y deben determinarse para cada lote de fabricación. Todos los demás valores que no se han marcado son valores típicos que se han ensayado con muestras seleccionadas.

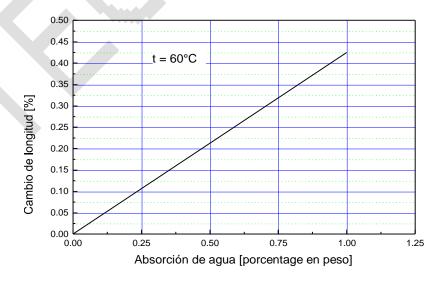
Judenburg, Julio 1996 Dr. TS/Materiales

ECOTAL es un semiproducto de poliacetal (polioximetileno) fabricado por ECONOMOS y pertenece al grupo de termoplásticos técnicos. ECOTAL es de dolor negro.

Características:

ECOTAL es altamente estable dimensionalmente, duro y de muy baja capacidad de absorción. ECOTAL tiene una alta resistencia a la rotura, por lo tanto tiene una baja tendencia a fluir por debajo de los 80°C. ECOTAL ofrece un excelente deslizamiento y una alta resistencia al desgaste.

Coeficiente de rozamiento $\mu=0.25$ -0.32 (fricción en seco con acero 16MnCr5 , p=0.5 kp/cm², V=0.6 m/s/5h)


Valores estándar para el factor-pv (funcionamiento en seco):

v = 0.05 m/s	$pv = 0.11 (N.m/mm^2.s)$
v = 0.5 m/s	$pv = 0.1 \text{ (N.m/mm}^2.\text{s)}$
v = 5 m/s	$pv = 0.07 \text{ (N.m/mm}^2.s)$

Puede usarse a temperaturas entre -50° y +100°C (para cortos períodos de tiempo hasta + 130 °C). El uso en aplicaciones donde se tengan que soportar cargas durante largos períodos de tiempo (anillos retenedores, piezas de sujeción, incluso retenes radiales) la temperatura de funcionamiento se limitará como máximo a 80°C (alivio de esfuerzo, fluencia lenta).

ECOTAL tiene unas buenas propiedades eléctricas y una alta resistencia química y a la rotura. Para los cambios lineales dimensionales por absorción de agua ver el cuadro siguiente.

Cambio de longitud por absorción de agua

Resistencia:

Buena resistencia	Resistencia media	Poca o nula resistencia
Grasas y aceites minerales	Acetonas	Ácidos y bases fuertes
Aceites y grasas vegetales y		Agentes oxidantes
animales		
Carburantes		
Alcoholes		
Agua		
Ácidos y bases débiles		
Hidrocarburos alifáticos y		
aromáticos		

Aplicaciones:

ECOTAL se usa principalmente para aplicaciones donde se necesiten una alta dureza y un bajo coeficiente de rozamiento, por ej. en elementos de soporte y guiaje hasta 100°C.

Principales usos: anillos guía

anillos de apoyo

piezas especiales para juntas

rascadores para aplicaciones especiales

asientos y piezas para válvulas

piezas para construcción casquillos y cojinetes

ECOTAL (negro)
Polioximetileno (POM)
(también conocido como "Poliacetal")

Propiedades	Unidades	Valor	Norma
Densidad	g/cm³	1,40	DIN 53479
Dureza a la bola H 358/30	N/mm²	135	DIN 53456
Dureza	Shore D	82	DIN 53505
Resistencia a fluencia	N/mm²	62	DIN 53455
			•
Alargamiento a fluencia	%	8 - 10	DIN 53455
Alargamiento de rotura	%	40	DIN 53455
Módulo de elasticidad	N/mm²	2600	DIN 53457
Resistencia al impacto Izod			
a + 23°C	kJ/m²	70	ISO 180
a - 30°C	kJ/m²	40	ISO 180
Absorción de agua, 23°C, hasta	%	0,8	DIN 53495/L2
saturación			
Coeficiente de rozamiento	μ	0,17 a 0,43	
Temperatura mínima de servicio	°C	- 50	
Temperatura máxima de servicio	°C	+100	

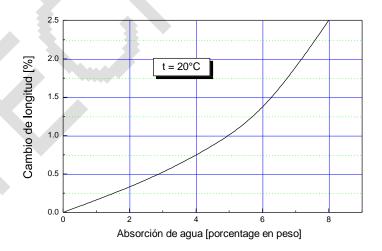
Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Estos valores sólo se han ensayado con muestas seleccionadas.

Judenburg, Julio 1996 Dr. TS/Materiales

ECOMID (PA6) - negro

ECOMID es un semiproducto suministrado por ECONOMOS fabricado de poliamida colada que pertenece al grupo de los termoplásticos técnicos. ECOMID es de color negro. ECOMID se usa en lugar de ECOTAL para diámetros superiores a 250 mm.

Características:


ECOMID tiene una muy buena estabilidad dimensional, rigidez y dureza, pero un relativamente alto poder de absorción de humedad. La absorción de humedad hace decrecer la estabilidad e influye en el cambio de volumen. ECOMID tiene unas buenas propiedades de deslizamiento.

Coeficiente de rozamiento $\mu=0.35$ - 0.42 (fricción en seco con acero 16MnCr5 , $P=0.5kp/cm^2,~V=0.6~m/S/24h$)

Valores estándar para el factor-pv (funcionamiento en seco)

$$v = 0.05 \text{ m/s}$$
 $pv = 0.09 \text{ (N.m/mm}^2.s)$
 $v = 0.5 \text{ m/s}$ $pv = 0.06 \text{ (N.m/mm}^2.s)$
 $v = 5 \text{ m/s}$ $pv = 0.05 \text{ (N.m/mm}^2.s)$

Recomendado para temperaturas entre -40°C y +100°C (para cortos períodos de tiempo hasta 140°C). Buena resistencia química, pobres propiedades eléctricas debido a la alta absorción de agua. La humedad influye en las propiedades mecánicas. La dureza y la rigidez disminuyen cuando aumenta el contenido de agua. La absorción de agua (8,5 %, saturación a 23°C) provoca cambios dimensionales. Los cambios dimensionales causados por la absorción de agua pueden ser calculados exactamente, ya que las influencias en la forma, método y procesamiento son muy importantes (cambio en la cristalización). La figura inferior nos muestra los valores de cambio de longitud por absorción de agua.

Resistencia:

Buena resistencia	Resistencia media	Poca o nula resistencia
Grasas y aceites minerales	Hidrocarburos clorados	Ácidos y bases fuertes
Grasas y aceites vegetales y animales		
Hidrocarburos aromáticos y alifáticos		
Esteres		
Acetonas		
Alcoholes		
Agua		
Bases débiles		
Carburantes		

Aplicaciones:

ECOMID se usa principalmente en aplicaciones donde se necesite una alta dureza (la dureza disminuye con la absorción de agua), bajo coeficiente de rozamiento, excelente deslizamiento y buenas propiedades anti desgaste, por ejemplo, para anillos guía y anillos de apoyo hasta 100°C. La utilización del ECOMID en medios acuosos no es recomendable debido a su alta absorción de agua.

Principales usos: anillos guía

anillos de apoyo

piezas especiales para juntas asientos y piezas para válvulas

piezas para contrucción casquillos y cojinetes

ECOMID (negro) Poliamida 6 colada

Propiedad	Unidad	Valor	Norma
1 Topicuuu		, with	1,021111
Densidad	g/cm³	1,15	DIN 53479
Dureza a la bola, húmedo	N/mm²	125	DIN 53456
Dureza, húmedo	Shore D	77	DIN 53505
Resistencia a fluencia, húmedo	N/mm²	65	DIN 53455
Alargamiento a rotura, húmedo	%	120	DIN 53455
Módulo de elasticidad, húmedo	N/mm²	1800	DIN 53457
Resistencia al impacto,			DIN 53453
Charpy, 23 °C, húmedo	kJ/m²	no break	
Absorción de agua 23°C,	%	8,5	DIN 53495/12
Saturación			
Absorción humedad 23°C,	%	2,2	DIN 53714
saturación			
Coeficiente de rozamiento	P=0,05	0,35 - 0,42	
	N/mm²		
	V = 0.6 m/s		
Temperatura mínima de servicio	°C	- 40	
Temperatura máxima de servicio	°C	+100	

Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Estos valores sólo se han ensayado con muestas seleccionadas.

Judenburg, Julio 1996 Dr. TS/Materiales

ECOFLON I (PTFE, virgen) - blanco

ECOFLON I es un semiproducto fabricado con un termoplástico semicristalino con la base química de politetrafluoroetileno. Debido a su estructura, el PTFE no puede ser procesado con los métodos usuales de los termoplásticos . ECOFLON I no está coloreado y por lo tanto es de color blanco.

Características:

ECOFLON I puede usarse en un amplio campo de temperaturas (-200°C hasta +260°C), ofrece el más bajo coeficiente de rozamiento ($\mu = 0.1$) de todos los plásticos y es altamente resistente a todos los medios. ECOFLON I tiene una superficie anti adhesiva, no absorbe humedad y tiene unas muy buenas propiedades eléctricas. Se ha observado que la deformación plástica depende del tiempo (fluencia lenta) incluso sometido a pequeñas presiones (tendencia a fluir).

Resistencia:

A casi todos los productos químicos, con la excepción del flúor, el triclofluoruro y las aleaciones alcalino-metálicas.

PTFE tiene la más baja resistencia a la radiación de todos los plásticos.

No se recomienda su uso en agua como junta dinámica (alto desgaste).

Aplicaciones:

ECOFLON I se usa en aquellos casos en los que no se puede utilizar ningún otro material debido a la resistencia química y a la temperatura, y donde se necesiten superficies anti adhesivas y unos bajos coeficientes de rozamiento. En la tecnología de la estanqueidad, a menudo se usa como anillo anti extrusión.

Principales usos: elementos de estanqueidad para altas y bajas presiones

anillos de apoyo y guías

juntas rotativas juntas tóricas

piezas especiales para la indústria química y eléctrica

ECOFLON I (blanco) Politetrafluoroetileno (PTFE virgen)

Propiedad	Unidad	Valor	Norma
Densidad	g/cm³	2,17	DIN 53479
Dureza	Shore D	57	DIN 53505
Resistencia a la tracción	N/mm²	27	DIN 53455
Alargamiento de rotura	%	300	DIN 53455
Módulo de elasticidad	N/mm²	750	DIN 53457
Resistencia al impacto, Charpy	kJ/m²	no rompe	DIN 54453
Coeficiente de expansión térmica			
(25°C)	K ⁻¹	16 . 10 ⁻⁵	DIN 52328
Coeficiente de rozamiento		0,08	
Coeficiente de conductividad	W/m.K	0,23	
térmica			
Temperatura mínima de servicio	°C	- 200	
Temperatura máxima de servicio	°C	+ 260	

Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Estos valores sólo se han ensayado con muestas seleccionadas.

Judenburg, Julio 1996 Dr. TS/Materiales

ECOFLON II (PTFE cargado) - gris

ECOFLON II es un semiproducto fabricado con un termoplástico cargado semicristalino con la base química de politetrafluoroetileno. ECOFLON II es un PTFE cargado con fibra de vidrio y sulfuro de molibdeno. ECOFLON II no está coloreado y es de color gris.

Características:

ECOFLON II puede usarse en un amplio campo de temperaturas (-200°C hasta +260°C), tiene un muy bajo coeficiente de rozamiento y es altamente resistente a los productos químicos. ECOFLON II tiene una superficie anti adhesiva y no absorve humedad. Debido a los productos de relleno, la deformación en función del tiempo (fluencia lenta) es menor que en el ECOFLON I (menor tendencia a fluir, mayor resistencia a la extrusión).

Resistencia:

El material básico y las fibras de vidrio son resistentes a la mayoría de productos químicos, sólo el MoS₂ puede ser atacado por algunos productos químicos y puede ser necesario un test de resistencia. No debe usarse en aplicaciones donde haya radiación. No se recomienda usar en aplicaciones dinámicas con agua (alto desgaste)

Aplicaciones:

ECOFLON II se usa principalmente en aplicaciones donde no se pueda usar PTFE virgen, con altas solicitaciones químicas y térmicas y en casos donde se necesiten superficies anti adhesivas, pequeñas fricciones, y alta resistencia a la extrusión y a la deformación.

Principales usos: elementos de estanqueidad para baja fricción y alta resistencia

elementos de soporte y guiaje

elementos de estanqueidad con soportes elásticos (elastómeros,

muelles)

Valores pv críticos (p = fuerza, v = velocidad)

v = 0.05 m/s $pv = 0.032 \text{ (N.m/mm}^2.s)$ v = 0.5 m/s $pv = 0.039 \text{ (N.m./mm}^2.s)^*$ V = 5 m/s $pv = 0.05 \text{ (N.m./mm}^2.s)^*$

^{*} Aumento de temperatura por encima de 150°C, el contorno de la superficie metálica se vuelve azul

ECOFLON II (gris oscuro) PTFE cargado con 15% fibra de vidrio y 5% bisulfuro de molibdeno

Propiedad	Unidad	Valor	Norma
Densidad	g/cm³	2,25	ASTM D 1457
Dureza	Shore D	60	DIN 53505
Resistencia a la tracción	N/mm²	18	ASTM D 1457
Alargamiento de rotura	%	200	ASTM D 1457
Coeficiente de expansión térmica (25°C)	K ⁻¹	11 . 10 -5	DIN 52328
Deformacion bajo carga, sin carga (14 N/mm², 24 h, 25°C)	%	4,3	
Coeficiente de conductividad térmica	W/m.K	0,48	DIN 62612
Temperatura mínima de servicio	°C	- 200	
Temperatura máxima de servicio	°C	+ 260	

Los valores indicados son solamente válidos para probetas ensayadas según las normas ISO, DIN y ASTM y no pueden aplicarse directamente a juntas y empaquetaduras. Los valores indicados con los símbolos mayor que (\ge) y menor que (\le) son valores nominales y deben determinarse para cada lote de fabricación. Todos los demás valores que no se han marcado son valores típicos que se han ensayado con muestras seleccionadas.

Judenburg, Juio 1996 Dr. TS/Materiales

ECOPAEK (Poliarileter cetona)

ECOPAEK es un semiproducto fabricado por ECONOMOS. Está fabricado de poliarileter cetona y pertenece al grupo de termoplásticos parcialmente cristalinos resistente a altas temperaturas. En su fabricación se utilizan productos de BASF AG (Ultrapek) o Victrex Sales Ltd. (Victrex).

Características:

ECOPAEK es un polímero con alta resistencia a la tracción, alta rigidez, alta resistencia a la deformación por temperatura, buen deslizamiento y buen coeficiente de rozamiento. En lo que se refiere a la resistencia a la tracción y a la rigidez, ECOPAEK supera a la mayoría de plásticos técnicos especialmente a altas temperaturas. El test de vibración torsional (ver Fig. 1) da una idea del comportamiento mecánico y térmico de este material.

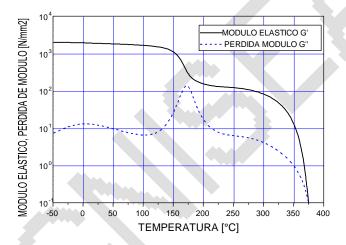


Fig. 1: Módulo elástico y perdida de módulo elástico del ECOPAEK

El pronunciado pico de la pérdida de módulo del ECOPAEK a 170°C muestra la temperatura de transición del vidrio y el nivel de ablandamiento de las partes amorfas, mientras que las partes cristalinas se derriten sobre los 380°C, con ello se consigue estabilidad dimensional y resistencia en un amplio campo de temperaturas. El módulo elástico permanece constante hasta la temperatura de transición del vidrio. Entonces, en un pequeño campo de temperatura, el módulo cae poco a poco hasta un nuevo nivel, el valor del cual cambia ligeramente hasta que se alcanza la temperatura de fusión.

La comparación de la resistencia a la tracción entre el ECOPAEK y el ECOTAL pone de relieve que con este material se pueden tolerar cargas mecánicas a altas temperaturas que son inaccesibles para los plásticos convencionales a temperatura ambiente. La Fig. 2 ilustra esta comparación.

ECOPAEK tiene también una alta resistencia al impacto y a la ductilidad; como la mayoría de termoplásticos es sensible a las muescas o ranuras.

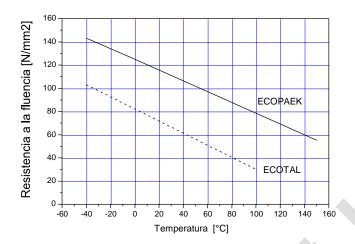


Fig. 2: Resistencia a fluencia del ECOPAEK y ECOTAL en función de la temperatura

ECOPAEK absorbe humedad del aire (0.25% almacenado en condiciones atmosféricas de laboratorio según DIN50014-23/50-2). La máxima absorción de humedad almacenado en agua a 23°C es de 0.8% después de 90 dias. La resistencia a la hidrólisis es extraordinariamente buena (después de 5000h. en agua a 140°C no se produce ningún cambio de resistencia a la tracción y alargamiento de rotura).

La temperatura de distorsión por calor del ECOPAEK medida según DIN53461 (ISO75A) es a 170°C. La estabilidad termo oxidante o resistencia al envejecimiento térmico en aire del ECOPAEK es excelente y una de las mejores de los termoplásticos.

Según UL746B se puede alcanzar un índice de temperatura de 250°C (temperatura - tiempo límite - resistencia a la tracción después de 40.000h. es aún el 50% del valor inicial). En muchos casos el límite puede verse en una aplicación a máxima temperatura.

El comportamiento de las piezas fabricadas en ECOPAEK en calor y bajo la influencia de productos químicos depende del tiempo y de la temperatura, así como del diseño de las piezas.

La Fig. 3 muestra el diagrama esfuerzo-deformación e indica las propiedades elásticas en un amplio campo de temperatura.

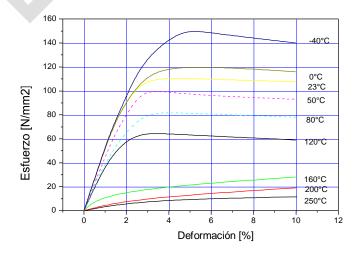


Fig. 3: diagramas esfuerzo-deformación del ECOPAEK a diferentes temperaturas La resistencia del ECOPAEK a la fluencia lenta es extraordinariamente alta. El comportamiento bajo cargas estáticas constantes se muestra en las curvas a 23°C, 100°C y 200°C. Los valores intermedios pueden extrapolarse (ver Fig. 4).

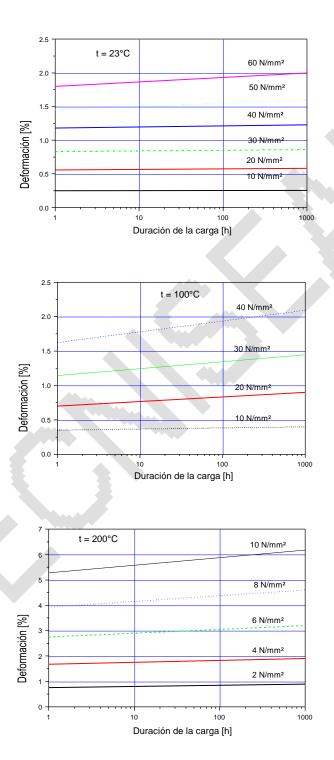


Fig. 4: Curvas de fluencia lenta del ECOPAEK a varias temperaturas y cargas

ECOPAEK es un buen material para cojinetes. El bajo coeficiente de rozamiento y el bajo desgaste hacen interesante el ECOPAEK para aplicaciones tribológicas. La Fig. 5 muestra una comparación de las propiedades tribológicas del ECOPAEK y ECOTAL determinadas con el aparato clavija-disco bajo unas condiciones predefinidas.

Coeficiente de rozamiento μ y nivel de desgase ΔS

	Coeficiente de rozamiento µ		Nivel de desgaste ΔS (μm / km)	
	temperatura super	ficie °C	temperatura superficie °C	
	40	120	40	120
ECOPAEK	0,56	0,51	2,4	7,0
ECOTAL	0,45		30	

Presión: 1 N/mm² Superficie metálica: 100 Cr6/800 HV

Velocidad fricción: 0.5 m/sec Rugosidad superficial: 2.5 μ

Fig. 5: Propiedades tribológicas del ECOPAEK y ECOTAL

Las buenas propiedades eléctricas combinadas con las buenas propiedades mecánicas, la excelente resistencia al calor y el buen comportamiento ante el fuego ofrecen un amplio campo de aplicaciones en la ingeniería eléctrica y electrónica.

Resistencia:

Buena resistencia	Resistencia media	Poca o nula resistencia
Grasas y aceites minerales	Ácidos concentrados sin agua	Acido sulfúrico concentrado
Grasas y aceites de silicona	Ácidos oxidados	Acido nítrico concentrado
Glicoles		Algunos hidrocarburos
Carburantes		halogenados
Hidrocarburos clorados		
Fluidos de frenos		
Alcoholes		
Esteres, eteres, acetonas		

Aplicaciones:

ECOPAEK se usa principalmente cuando se requieran altas temperaturas, altas solicitaciones mecánicas y químicas y donde los plásticos técnicos convencionales no se pueden usar.

Princiaples usos: piezas especiales de construcción

anillos guía y de apoyo

juntas y piezas para aceite en aplicaciones agrícolas

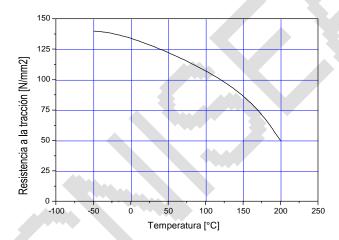
E C O P A E K - POLIARILETERCETONA

(color crema)

Propiedad	Unidad	Valor	Norma
Densidad	g/cm³	1,32	ISO R 1183
Dureza	Shore D	86	DIN 53505
Resistencia a fluencia	N/mm²	97	ISO R 527
Alargamiento a fluencia	%	4,9	ISO R 527
Alargamiento de rotura	%	> 50	ISO R 527
Módulo elástico	N/mm²	3600	ISO R 527
Resistencia al impacto, Charpy + 23°C, - 40°C	kJ/m²	no rompe	DIN 53453
Resistencia al impacto sin ranura, Charpy + 23°C	kJ/m²	8,2	ISO 179
Estabilidad dimensional a alta temperatura HDT/A	°C	170	ISO R 75
Estabilidad dimensional a alta temperatura HDT/B	°C	> 250	ISO R 75
Temperatura máxima de servicio	°C	260	
Absorción de agua 24h / 23°C	%	0,8	ISO R 62 A

Los valores indicados son datos determinados en probetas según la normas; cuando se trasladen estos datos a los correspondientes semiproductos deberan tenerse en cuenta ciertas restricciones.

Judenburg, Agosto 1996 Dr.TS/Materiales


ECORYT (PPS con 40% fibra de vidrio)

ECORYT es un semiproducto fabricado por ECONOMOS (sulfato de polifenileno cargado con fibra de vidrio de la firma Phillips Petroleum). ECORYT es un termoplástico parcialmente cristalino que pertenece al grupo de polímeros resistente a altas temperaturas.

Características:

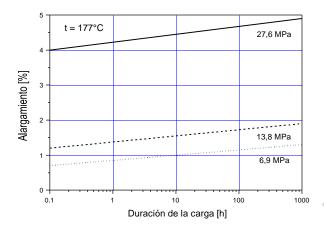
ECORYT es un polímero con alta rigidez y un buen comportamiento a la fluencia lenta. La temperatura de distorsión por calor está sobre los +260° C, y el índice de temperatura largo-tiempo (según UL) de 200 hasta 240°C.

La resistencia a la tracción es función de la temperatura y se indica en el diagrama inferior:

El material base para el ECORYT tiene una alta estabilidad a la hidrólisis. Debido al relleno de fibra de vidrio, la resistencia a la tracción en agua caliente decrece aproximadamente un 50% las primeras 6-8 semanas. Obviamente el agua caliente reduce las uniones entre el polímero y la fibra de vidrio de refuerzo. Esta situación estabilizada puede calcularse durante la construcción. La máxima absorción de agua es de un 0.05% a 23°C sin ningún cambio de dimensiones.

ECORYT no es recomendable como material para cojinetes. ECORYT es recomendable para anillos guía, pero no para movimientos rotativos. Las diferencias entre los coeficientes de rozamiento μ estático (0.5) y dinámico (0.55) son muy pequeñas.

La deformación bajo esfuerzo es muy baja, incluso a altas temperaturas:


Deformación bajo esfuerzo (13.8 MPa)

a 23°C no hay cambio medible

a 130°C 0.79 %

Tal como se indica en el diagrama inferior la fluencia lenta es muy baja hasta 177°C de tremperatura.

Las buenas propiedades eléctricas combinadas con las buenas propiedades mecánicas y térmicas y el buen comportamiento en caso de fuego permiten un amplio abanico de usos en ingeniería eléctrica y electrónica.

ECORYT también puede usarse para un amplio campo de aplicaciones con altas radiaciones energéticas, radiaciones de neutrones y rayos gamma.

Resistencia:

Buena resistencia	Resistencia media	Poca o nula resistencia
Hidrocarburos alifáticos	Agua caliente	Medios oxidantes
Grasas y aceites minerales		Ácidos fuertes
Aceites para transformadores		Hidrocarburos clorados
Agua fría		Haluros
Alcoholes		
Esteres		
Fluidos de frenos		
Ácidos y bases débiles		
Carburantes	<i>5</i>	

Aplicaciones:

ECORYT se usa principalmente para altas temperaturas combinadas con altos esfuerzos mecánicos. El campo de aplicaciones va desde la prospección minera de gas y petróleo a la ingeniería eléctrica y electrónica.

Principales usos: juntas especiales para transporte de petróleo y gas natural

piezas especiales, piezas laminadas elementos de guiaje y soporte

piezas para electricidad

ECORYT (PPS + 40 % fibra de vidrio, color bronce) Sulfato de polifenileno - Fibra de vidrio

Propiedad	Unidad	Valor	Norma
Densidad	g/cm³	1,67	DIN 53479
Resistencia a la tracción	N/mm²	116	DIN 53455
Alargamiemto de rotura	%	0,9	DIN 53455
Resistencia al impacto, Charpy + 23°C,	kJ/m²	11	DIN 53453
Resistencia al impacto sin ranura, Charpy + 23°C	kJ/m²	6	DIN 53453
Estabilidad dimensional a alta temperatura HDT/A	°C	260	DIN 53461
Temperatura máxima de servicio	°C	220	
Absorción de agua 23°C, 24h	%	0,05	DIN 53495/1 L
Coeficiente de expansión térmica lineal	K - 1	2,9 x 10 ⁻⁵	

Los valores indicados están basados en datos determinados por la firma PHILIPS PETROLEUM para probetas según las normas; cuando se trasladen estos datos a los correspondientes semiproductos deberan tenerse en cuenta ciertas restricciones.

Judenburg, Julio 1996 Dr.TS/Materiales